Properties

Label 129360if
Number of curves $4$
Conductor $129360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("if1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 129360if have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129360if do not have complex multiplication.

Modular form 129360.2.a.if

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} + q^{11} + 4 q^{13} + q^{15} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 129360if

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129360.if3 129360if1 \([0, 1, 0, -2025, 45198]\) \(-488095744/200475\) \(-377370932400\) \([2]\) \(165888\) \(0.92968\) \(\Gamma_0(N)\)-optimal
129360.if2 129360if2 \([0, 1, 0, -35100, 2519208]\) \(158792223184/16335\) \(491979882240\) \([2]\) \(331776\) \(1.2763\)  
129360.if4 129360if3 \([0, 1, 0, 15615, -496350]\) \(223673040896/187171875\) \(-352329342750000\) \([2]\) \(497664\) \(1.4790\)  
129360.if1 129360if4 \([0, 1, 0, -76260, -4428600]\) \(1628514404944/664335375\) \(20008548488544000\) \([2]\) \(995328\) \(1.8256\)