Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+595040x-233332492\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+595040xz^2-233332492z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+48198213x-170243981334\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(331, 0)$ | $0$ | $2$ |
Integral points
\( \left(331, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 129360 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-37043802346018406400$ | = | $-1 \cdot 2^{15} \cdot 3^{3} \cdot 5^{2} \cdot 7^{12} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{48351870250991}{76871856600} \) | = | $2^{-3} \cdot 3^{-3} \cdot 5^{-2} \cdot 7^{-6} \cdot 11^{-2} \cdot 17^{3} \cdot 2143^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4400799019337451377656716038$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.77397764684614317579576311062$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9486074789755161$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.42304392428131$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.10843875707731121124178889736$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot3\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $5.2050603397109381396058670735 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.205060340 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.108439 \cdot 1.000000 \cdot 192}{2^2} \\ & \approx 5.205060340\end{aligned}$$
Modular invariants
Modular form 129360.2.a.ie
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3981312 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{7}^{*}$ | additive | -1 | 4 | 15 | 3 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $7$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2521 & 12 \\ 5886 & 73 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 4593 & 9232 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 9190 & 9231 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 7706 & 11 \\ 3069 & 9220 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 2685 & 4232 \\ 2722 & 4243 \end{array}\right),\left(\begin{array}{rr} 3697 & 12 \\ 3702 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3959 & 9228 \\ 5274 & 9167 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$9809952768000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 147 = 3 \cdot 7^{2} \) |
| $3$ | split multiplicative | $4$ | \( 43120 = 2^{4} \cdot 5 \cdot 7^{2} \cdot 11 \) |
| $5$ | split multiplicative | $6$ | \( 25872 = 2^{4} \cdot 3 \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 11760 = 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 129360ic
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 2310u2, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{7}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.3557400.7 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.5423612040000.2 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.7289334581760000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.809926064640000.37 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.1373186906402481178364477507270784889651200000000.3 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 |
|---|---|---|---|---|---|
| Reduction type | add | split | split | add | split |
| $\lambda$-invariant(s) | - | 5 | 1 | - | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.