Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-37434056x-88162990476\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-37434056xz^2-88162990476z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3032158563x-64261723581342\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-3540, 2058)$ | $2.4111085134555119429540049397$ | $\infty$ |
| $(-3554, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3554, 0\right) \), \((-3540,\pm 2058)\), \((28702,\pm 4741632)\)
Invariants
| Conductor: | $N$ | = | \( 129360 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $364951652733718364160$ | = | $2^{24} \cdot 3^{4} \cdot 5 \cdot 7^{9} \cdot 11^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{12038605770121350841}{757333463040} \) | = | $2^{-12} \cdot 3^{-4} \cdot 5^{-1} \cdot 7^{-3} \cdot 11^{-3} \cdot 23^{3} \cdot 251^{3} \cdot 397^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0042359728201728585174193131$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3381337177325708965475108199$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9904748915898808$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.431261853627261$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4111085134555119429540049397$ |
|
| Real period: | $\Omega$ | ≈ | $0.061035776155258900414142128037$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot2^{2}\cdot1\cdot2^{2}\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.0638662166388641356997608494 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.063866217 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.061036 \cdot 2.411109 \cdot 192}{2^2} \\ & \approx 7.063866217\end{aligned}$$
Modular invariants
Modular form 129360.2.a.ew
For more coefficients, see the Downloads section to the right.
| Modular degree: | 7962624 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{16}^{*}$ | additive | -1 | 4 | 24 | 12 |
| $3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1929 & 388 \\ 8900 & 7349 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 7934 & 11 \end{array}\right),\left(\begin{array}{rr} 7904 & 9237 \\ 3099 & 86 \end{array}\right),\left(\begin{array}{rr} 7701 & 6164 \\ 8 & 4653 \end{array}\right),\left(\begin{array}{rr} 3376 & 21 \\ 2235 & 8866 \end{array}\right),\left(\begin{array}{rr} 3712 & 3 \\ 3237 & 9154 \end{array}\right),\left(\begin{array}{rr} 9217 & 24 \\ 9216 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2303 & 9216 \\ 2406 & 329 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2695 = 5 \cdot 7^{2} \cdot 11 \) |
| $3$ | split multiplicative | $4$ | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 25872 = 2^{4} \cdot 3 \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 11760 = 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 129360go
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310l3, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{385}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-77}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-77})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-21}, \sqrt{-165})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-21}, \sqrt{33})\) | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-21})\) | \(\Z/12\Z\) | not in database |
| $6$ | 6.2.810152280000.15 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.455583411360000.215 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $18$ | 18.0.60314488489916180797302945551854684708149657600000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | nonsplit | add | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 2 | 1 | - | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 1 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.