Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-39691976x-76930290060\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-39691976xz^2-76930290060z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3215050083x-56072536303518\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-3938, 135360)$ | $4.8222170269110238859080098795$ | $\infty$ |
| $(-2210, 0)$ | $0$ | $2$ |
| $(7107, 0)$ | $0$ | $2$ |
Integral points
\( \left(-4898, 0\right) \), \((-3938,\pm 135360)\), \( \left(-2210, 0\right) \), \( \left(7107, 0\right) \), \((28716,\pm 4739574)\)
Invariants
| Conductor: | $N$ | = | \( 129360 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $1446288827061481301606400$ | = | $2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 7^{12} \cdot 11^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{14351050585434661561}{3001282273281600} \) | = | $2^{-6} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-6} \cdot 11^{-6} \cdot 31^{3} \cdot 277^{3} \cdot 283^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3508095631001455132260353739$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6847073080125435512561268807$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9961821450746233$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.446189570357341$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.8222170269110238859080098795$ |
|
| Real period: | $\Omega$ | ≈ | $0.061035776155258900414142128037$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 384 $ = $ 2^{2}\cdot2\cdot2\cdot2^{2}\cdot( 2 \cdot 3 ) $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.0638662166388641356997608494 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.063866217 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.061036 \cdot 4.822217 \cdot 384}{4^2} \\ & \approx 7.063866217\end{aligned}$$
Modular invariants
Modular form 129360.2.a.ew
For more coefficients, see the Downloads section to the right.
| Modular degree: | 15925248 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $11$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 2521 & 12 \\ 5886 & 73 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 9224 & 9233 \end{array}\right),\left(\begin{array}{rr} 4621 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9233 & 9234 \\ 3966 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 6161 & 6 \\ 1540 & 1 \end{array}\right),\left(\begin{array}{rr} 7399 & 6 \\ 5538 & 9235 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6929 & 9228 \\ 0 & 9239 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 49 = 7^{2} \) |
| $3$ | split multiplicative | $4$ | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 25872 = 2^{4} \cdot 3 \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 11760 = 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 129360.ew
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310.l3, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{42}, \sqrt{-66})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-42})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{77})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $6$ | 6.2.810152280000.15 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.186606965293056.256 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.455583411360000.16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.7965941760000.33 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $18$ | 18.0.60314488489916180797302945551854684708149657600000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | nonsplit | add | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 2 | 1 | - | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 1 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.