Properties

Label 129285.y
Number of curves $1$
Conductor $129285$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 129285.y1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129285.y do not have complex multiplication.

Modular form 129285.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} - 3 q^{11} + 4 q^{16} + q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 129285.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129285.y1 129285j1 \([0, 0, 1, 78, -205]\) \(11501568/10625\) \(-48481875\) \([]\) \(19968\) \(0.16198\) \(\Gamma_0(N)\)-optimal