Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-2071545x+1146907475\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-2071545xz^2+1146907475z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-167795172x+836598934764\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(910, 4025)$ | $0.23489457150212841716728543028$ | $\infty$ |
Integral points
\((-746,\pm 47725)\), \((910,\pm 4025)\)
Invariants
| Conductor: | $N$ | = | \( 12880 \) | = | $2^{4} \cdot 5 \cdot 7 \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-7112722400000$ | = | $-1 \cdot 2^{8} \cdot 5^{5} \cdot 7^{5} \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{3840316976122235063296}{27784071875} \) | = | $-1 \cdot 2^{10} \cdot 5^{-5} \cdot 7^{-5} \cdot 23^{-2} \cdot 73^{3} \cdot 21283^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0625001004062480798527126524$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6004019800329512069078912381$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0006977554789769$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.837736791329582$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.23489457150212841716728543028$ |
|
| Real period: | $\Omega$ | ≈ | $0.51377056880995296465053910630$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 50 $ = $ 1\cdot5\cdot5\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.0340958805509342332722067474 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.034095881 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.513771 \cdot 0.234895 \cdot 50}{1^2} \\ & \approx 6.034095881\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 144000 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | 1 | 4 | 8 | 0 |
| $5$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $7$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 70.2.0.a.1, level \( 70 = 2 \cdot 5 \cdot 7 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 69 & 2 \\ 68 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 2 \\ 31 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 57 & 2 \\ 57 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 69 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[70])$ is a degree-$2903040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/70\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 35 = 5 \cdot 7 \) |
| $5$ | split multiplicative | $6$ | \( 368 = 2^{4} \cdot 23 \) |
| $7$ | split multiplicative | $8$ | \( 1840 = 2^{4} \cdot 5 \cdot 23 \) |
| $23$ | nonsplit multiplicative | $24$ | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 12880g consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 6440i1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.140.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.686000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | split | split | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 7 | 12 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.