Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+1926x-289652\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+1926xz^2-289652z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+30813x-18506914\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(99, 880)$ | $2.4200602891105349085698020590$ | $\infty$ |
$(227/4, -227/8)$ | $0$ | $2$ |
Integral points
\( \left(99, 880\right) \), \( \left(99, -979\right) \), \( \left(329, 5825\right) \), \( \left(329, -6154\right) \)
Invariants
Conductor: | $N$ | = | \( 12870 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-36580776855480$ | = | $-1 \cdot 2^{3} \cdot 3^{7} \cdot 5 \cdot 11^{4} \cdot 13^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{1083523132511}{50179392120} \) | = | $2^{-3} \cdot 3^{-1} \cdot 5^{-1} \cdot 11^{-4} \cdot 13^{-4} \cdot 10271^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2823116447268705892275433796$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.73300550039281574352992076114$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9539844156603843$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.086875420186728$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4200602891105349085698020590$ |
|
Real period: | $\Omega$ | ≈ | $0.31181673287765283642329592798$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2^{2}\cdot1\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.0184611708695798360615880711 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.018461171 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.311817 \cdot 2.420060 \cdot 16}{2^2} \\ & \approx 3.018461171\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 36864 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 13736 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 11432 & 17157 \\ 11435 & 17158 \end{array}\right),\left(\begin{array}{rr} 7801 & 8 \\ 14044 & 33 \end{array}\right),\left(\begin{array}{rr} 6443 & 6436 \\ 6482 & 15021 \end{array}\right),\left(\begin{array}{rr} 2641 & 8 \\ 10564 & 33 \end{array}\right),\left(\begin{array}{rr} 10728 & 2153 \\ 6427 & 6414 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 17154 & 17155 \end{array}\right),\left(\begin{array}{rr} 17153 & 8 \\ 17152 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$255058771968000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 45 = 3^{2} \cdot 5 \) |
$3$ | additive | $8$ | \( 715 = 5 \cdot 11 \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 2574 = 2 \cdot 3^{2} \cdot 11 \cdot 13 \) |
$11$ | nonsplit multiplicative | $12$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 12870t
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 4290t4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-30}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{6})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.47775744000000.19 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.46297545707716875.5 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | split | ord | nonsplit | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 3 | - | 4 | 1 | 3 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.