Properties

Label 12870t
Number of curves $4$
Conductor $12870$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12870t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12870t do not have complex multiplication.

Modular form 12870.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 4 q^{7} - q^{8} - q^{10} - q^{11} - q^{13} + 4 q^{14} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 12870t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12870.m3 12870t1 \([1, -1, 0, -594, 4180]\) \(31824875809/8785920\) \(6404935680\) \([2]\) \(9216\) \(0.58916\) \(\Gamma_0(N)\)-optimal
12870.m2 12870t2 \([1, -1, 0, -3474, -74732]\) \(6361447449889/294465600\) \(214665422400\) \([2, 2]\) \(18432\) \(0.93574\)  
12870.m1 12870t3 \([1, -1, 0, -54954, -4944740]\) \(25176685646263969/57915000\) \(42220035000\) \([2]\) \(36864\) \(1.2823\)  
12870.m4 12870t4 \([1, -1, 0, 1926, -289652]\) \(1083523132511/50179392120\) \(-36580776855480\) \([2]\) \(36864\) \(1.2823\)