Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+585x+6925\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+585xz^2+6925z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+9357x+452558\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-7, 53)$ | $0.84248997873277455371037840044$ | $\infty$ |
$(15, 130)$ | $0.85130417332796635374342516541$ | $\infty$ |
$(-10, 5)$ | $0$ | $2$ |
Integral points
\( \left(-10, 5\right) \), \( \left(-9, 34\right) \), \( \left(-9, -25\right) \), \( \left(-7, 53\right) \), \( \left(-7, -46\right) \), \( \left(2, 89\right) \), \( \left(2, -91\right) \), \( \left(15, 130\right) \), \( \left(15, -145\right) \), \( \left(26, 185\right) \), \( \left(26, -211\right) \), \( \left(38, 269\right) \), \( \left(38, -307\right) \), \( \left(65, 530\right) \), \( \left(65, -595\right) \), \( \left(71, 599\right) \), \( \left(71, -670\right) \), \( \left(246, 3749\right) \), \( \left(246, -3995\right) \), \( \left(290, 4805\right) \), \( \left(290, -5095\right) \), \( \left(890, 26105\right) \), \( \left(890, -26995\right) \), \( \left(1577, 61829\right) \), \( \left(1577, -63406\right) \), \( \left(39665, 7879805\right) \), \( \left(39665, -7919470\right) \)
Invariants
Conductor: | $N$ | = | \( 12870 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-34401510000$ | = | $-1 \cdot 2^{4} \cdot 3^{7} \cdot 5^{4} \cdot 11^{2} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{30342134159}{47190000} \) | = | $2^{-4} \cdot 3^{-1} \cdot 5^{-4} \cdot 11^{-2} \cdot 13^{-1} \cdot 3119^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.70704858235018213190309007064$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.15774243801612728620546745218$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8742321530526188$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3025323339083847$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.69817791942326886691393219332$ |
|
Real period: | $\Omega$ | ≈ | $0.79159292245693685778915631142$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.4213815970493534546485435819 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.421381597 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.791593 \cdot 0.698178 \cdot 32}{2^2} \\ & \approx 4.421381597\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 16384 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 512 & 1557 \\ 515 & 1558 \end{array}\right),\left(\begin{array}{rr} 203 & 198 \\ 1370 & 587 \end{array}\right),\left(\begin{array}{rr} 848 & 3 \\ 725 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 937 & 8 \\ 628 & 33 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1554 & 1555 \end{array}\right),\left(\begin{array}{rr} 1369 & 1368 \\ 598 & 1375 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 117 = 3^{2} \cdot 13 \) |
$3$ | additive | $8$ | \( 1430 = 2 \cdot 5 \cdot 11 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 2574 = 2 \cdot 3^{2} \cdot 11 \cdot 13 \) |
$11$ | split multiplicative | $12$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 12870q
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 4290v1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.13188589415629056.23 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.9007984028160000.21 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | ord | split | split | ord | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 3 | - | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.