Properties

Label 12870a
Number of curves $1$
Conductor $12870$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 12870a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12870a do not have complex multiplication.

Modular form 12870.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - 5 q^{7} - q^{8} + q^{10} - q^{11} + q^{13} + 5 q^{14} + q^{16} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 12870a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12870.a1 12870a1 \([1, -1, 0, -11895, -498979]\) \(-9456845543523/57200000\) \(-1125867600000\) \([]\) \(33600\) \(1.1519\) \(\Gamma_0(N)\)-optimal