Properties

Label 128700o
Number of curves $1$
Conductor $128700$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 128700o1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 128700o do not have complex multiplication.

Modular form 128700.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{7} - q^{11} + q^{13} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 128700o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
128700.e1 128700o1 \([0, 0, 0, 31875, -47134375]\) \(31443200/8444007\) \(-961825172343750000\) \([]\) \(1843200\) \(2.1298\) \(\Gamma_0(N)\)-optimal