Properties

Label 12870.ce
Number of curves $4$
Conductor $12870$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ce1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12870.ce have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12870.ce do not have complex multiplication.

Modular form 12870.2.a.ce

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + 4 q^{7} + q^{8} + q^{10} + q^{11} + q^{13} + 4 q^{14} + q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 12870.ce

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12870.ce1 12870cf4 \([1, -1, 1, -343337, 77519211]\) \(6139836723518159689/3799803150\) \(2770056496350\) \([2]\) \(98304\) \(1.7084\)  
12870.ce2 12870cf3 \([1, -1, 1, -48317, -2338941]\) \(17111482619973769/6627044531250\) \(4831115463281250\) \([2]\) \(98304\) \(1.7084\)  
12870.ce3 12870cf2 \([1, -1, 1, -21587, 1200111]\) \(1525998818291689/37268302500\) \(27168592522500\) \([2, 2]\) \(49152\) \(1.3618\)  
12870.ce4 12870cf1 \([1, -1, 1, 193, 58839]\) \(1095912791/2055596400\) \(-1498529775600\) \([4]\) \(24576\) \(1.0153\) \(\Gamma_0(N)\)-optimal