Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-102780x+12157776\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-102780xz^2+12157776z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1644483x+776453182\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(216, -108)$ | $0$ | $2$ |
Integral points
\( \left(216, -108\right) \)
Invariants
Conductor: | $N$ | = | \( 12870 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $5902788722688000$ | = | $2^{24} \cdot 3^{9} \cdot 5^{3} \cdot 11 \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{164711681450297281}{8097103872000} \) | = | $2^{-24} \cdot 3^{-3} \cdot 5^{-3} \cdot 11^{-1} \cdot 13^{-1} \cdot 47^{3} \cdot 107^{3} \cdot 109^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7855114749657531054328353801$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2362053306316982597352127616$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9585908886289013$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8860124462465455$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.42066793980675354163480667642$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2}\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.84133587961350708326961335284 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.841335880 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.420668 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 0.841335880\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 110592 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{24}$ | nonsplit multiplicative | 1 | 1 | 24 | 24 |
$3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 4696 & 3 \\ 5781 & 17074 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 17137 & 24 \\ 17136 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 4297 & 24 \\ 4782 & 1687 \end{array}\right),\left(\begin{array}{rr} 7881 & 5008 \\ 3116 & 629 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 15854 & 7931 \end{array}\right),\left(\begin{array}{rr} 17144 & 8559 \\ 3145 & 6094 \end{array}\right),\left(\begin{array}{rr} 7936 & 21 \\ 2355 & 16786 \end{array}\right),\left(\begin{array}{rr} 10312 & 3 \\ 9837 & 17074 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$31882346496000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 6435 = 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
$3$ | additive | $2$ | \( 143 = 11 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 2574 = 2 \cdot 3^{2} \cdot 11 \cdot 13 \) |
$11$ | split multiplicative | $12$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 12870.c
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 4290.bb7, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2145}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{165}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/6\Z\) | not in database |
$3$ | 3.1.61347.1 | \(\Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{13}, \sqrt{165})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-715})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-55})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{13})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.0.11290363227.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.201815242682625.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.15524249437125.1 | \(\Z/12\Z\) | not in database |
$6$ | 6.2.48924907317.1 | \(\Z/12\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.10644199877025.9 | \(\Z/24\Z\) | not in database |
$8$ | 8.0.21169431050625.21 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.0.972052463993235528598832054469123000000000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 | 13 |
---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | split | split |
$\lambda$-invariant(s) | 7 | - | 0 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.