Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-1092088x-435539719\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-1092088xz^2-435539719z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1415346075x-20299310930250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-555, 277)$ | $0$ | $2$ |
$(1205, -603)$ | $0$ | $2$ |
Integral points
\( \left(-555, 277\right) \), \( \left(1205, -603\right) \)
Invariants
Conductor: | $N$ | = | \( 127050 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $1582048262025000000$ | = | $2^{6} \cdot 3^{6} \cdot 5^{8} \cdot 7^{2} \cdot 11^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{5203798902289}{57153600} \) | = | $2^{-6} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{3} \cdot 31^{3} \cdot 43^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3068128710381327177510553771$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.30314627842189725841970392150$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0709743427632117$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.53734552818847$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.14778261508871448106890120298$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 384 $ = $ ( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.5467827621291475456536288715 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.546782762 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.147783 \cdot 1.000000 \cdot 384}{4^2} \\ & \approx 3.546782762\end{aligned}$$
Modular invariants
Modular form 127050.2.a.gr
For more coefficients, see the Downloads section to the right.
Modular degree: | 3317760 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 2311 & 3366 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5281 & 6732 \\ 7326 & 3433 \end{array}\right),\left(\begin{array}{rr} 7721 & 5874 \\ 7062 & 3365 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 6447 & 2530 \\ 2662 & 4203 \end{array}\right),\left(\begin{array}{rr} 4621 & 3366 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 9224 & 9233 \end{array}\right),\left(\begin{array}{rr} 6719 & 0 \\ 0 & 9239 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 3025 = 5^{2} \cdot 11^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 21175 = 5^{2} \cdot 7 \cdot 11^{2} \) |
$5$ | additive | $18$ | \( 5082 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \) |
$7$ | split multiplicative | $8$ | \( 18150 = 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
$11$ | additive | $62$ | \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 127050gb
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 210a2, its twist by $-55$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-55}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-33}, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-14}, \sqrt{-110})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{30}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$6$ | 6.2.269639803125.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.455583411360000.142 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.0.89991784960000.174 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.0.3035957760000.10 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$18$ | 18.0.13993492922045740252797365243295000000000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | split | nonsplit | add | split | add |
$\lambda$-invariant(s) | 3 | 2 | - | 1 | - |
$\mu$-invariant(s) | 1 | 0 | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.