Properties

Label 126960l
Number of curves $4$
Conductor $126960$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 126960l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126960l do not have complex multiplication.

Modular form 126960.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 4 q^{7} + q^{9} - 6 q^{13} - q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 126960l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126960.bu4 126960l1 \([0, -1, 0, 1940, -15968]\) \(21296/15\) \(-568457813760\) \([2]\) \(180224\) \(0.94400\) \(\Gamma_0(N)\)-optimal
126960.bu3 126960l2 \([0, -1, 0, -8640, -126000]\) \(470596/225\) \(34107468825600\) \([2, 2]\) \(360448\) \(1.2906\)  
126960.bu2 126960l3 \([0, -1, 0, -72120, 7390032]\) \(136835858/1875\) \(568457813760000\) \([2]\) \(720896\) \(1.6371\)  
126960.bu1 126960l4 \([0, -1, 0, -114440, -14853360]\) \(546718898/405\) \(122786887772160\) \([2]\) \(720896\) \(1.6371\)