Properties

Label 126672.e
Number of curves $2$
Conductor $126672$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 126672.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126672.e do not have complex multiplication.

Modular form 126672.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - q^{7} + q^{9} + 3 q^{11} + q^{13} + 3 q^{15} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 126672.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126672.e1 126672bd2 \([0, -1, 0, -233472, 43497984]\) \(343613355239411713/9001882344\) \(36871710081024\) \([]\) \(746496\) \(1.7092\)  
126672.e2 126672bd1 \([0, -1, 0, -4992, -36864]\) \(3359498792833/1787595264\) \(7321990201344\) \([]\) \(248832\) \(1.1599\) \(\Gamma_0(N)\)-optimal