Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+339167x-8070463\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+339167xz^2-8070463z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+27472500x-5800950000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 126400 \) | = | $2^{6} \cdot 5^{2} \cdot 79$ |
|
Discriminant: | $\Delta$ | = | $-2524359680000000000$ | = | $-1 \cdot 2^{19} \cdot 5^{10} \cdot 79^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{1685478575}{986078} \) | = | $2^{-1} \cdot 5^{2} \cdot 11^{3} \cdot 37^{3} \cdot 79^{-3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2204539221986159327415688867$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16046510900305234355157873984$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9598593422673568$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.2406969393181235$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.15142809432301887694664991006$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.30285618864603775389329982011 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.302856189 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.151428 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 0.302856189\end{aligned}$$
Modular invariants
Modular form 126400.2.a.o
For more coefficients, see the Downloads section to the right.
Modular degree: | 2004480 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{9}^{*}$ | additive | -1 | 6 | 19 | 1 |
$5$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
$79$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9480 = 2^{3} \cdot 3 \cdot 5 \cdot 79 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 7583 & 0 \\ 0 & 9479 \end{array}\right),\left(\begin{array}{rr} 4739 & 1890 \\ 945 & 5669 \end{array}\right),\left(\begin{array}{rr} 2369 & 1890 \\ 0 & 9479 \end{array}\right),\left(\begin{array}{rr} 9475 & 6 \\ 9474 & 7 \end{array}\right),\left(\begin{array}{rr} 1346 & 555 \\ 5935 & 2851 \end{array}\right),\left(\begin{array}{rr} 6481 & 7590 \\ 4275 & 3811 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9480])$ is a degree-$85047194419200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1975 = 5^{2} \cdot 79 \) |
$3$ | good | $2$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
$5$ | additive | $2$ | \( 5056 = 2^{6} \cdot 79 \) |
$79$ | nonsplit multiplicative | $80$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 126400.o
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 3950.h2, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{30}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.15800.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.2.1078444800000.2 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.157772480000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.57600000.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.29531050993727307102395365541932319834112000000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.743275778853291687936000000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | nonsplit |
$\lambda$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.