Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-37408033x+88048276063\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-37408033xz^2+88048276063z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3030050700x+64196283402000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-13479/25, 41090744/125)$ | $5.8543067080659830924853266126$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 126400 \) | = | $2^{6} \cdot 5^{2} \cdot 79$ |
|
Discriminant: | $\Delta$ | = | $201657968164864000000$ | = | $2^{22} \cdot 5^{6} \cdot 79^{5} $ |
|
j-invariant: | $j$ | = | \( \frac{1413378216646643521}{49232902384} \) | = | $2^{-4} \cdot 79^{-5} \cdot 1122241^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9865493310641931510010600918$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1421096040072249995748322430$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0196212670962481$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.441786497671877$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.8543067080659830924853266126$ |
|
Real period: | $\Omega$ | ≈ | $0.16684644564237279435627404683$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 10 $ = $ 2\cdot1\cdot5 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $9.7677026594110946349030839770 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.767702659 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.166846 \cdot 5.854307 \cdot 10}{1^2} \\ & \approx 9.767702659\end{aligned}$$
Modular invariants
Modular form 126400.2.a.cd
For more coefficients, see the Downloads section to the right.
Modular degree: | 6451200 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{12}^{*}$ | additive | -1 | 6 | 22 | 4 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$79$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3160 = 2^{3} \cdot 5 \cdot 79 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 3151 & 10 \\ 3150 & 11 \end{array}\right),\left(\begin{array}{rr} 2194 & 3155 \\ 2385 & 1584 \end{array}\right),\left(\begin{array}{rr} 1579 & 0 \\ 0 & 3159 \end{array}\right),\left(\begin{array}{rr} 2363 & 3150 \\ 1620 & 3059 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 785 & 1576 \end{array}\right),\left(\begin{array}{rr} 1589 & 3150 \\ 1590 & 3149 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 3105 & 3041 \end{array}\right),\left(\begin{array}{rr} 3154 & 3147 \\ 1635 & 1699 \end{array}\right)$.
The torsion field $K:=\Q(E[3160])$ is a degree-$590605516800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1975 = 5^{2} \cdot 79 \) |
$5$ | additive | $14$ | \( 64 = 2^{6} \) |
$79$ | split multiplicative | $80$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 126400.cd
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 158.d1, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.316.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.4.8000.1 | \(\Z/5\Z\) | not in database |
$6$ | 6.6.31554496.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$10$ | 10.0.25600000000000.1 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord | split |
$\lambda$-invariant(s) | - | 3 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.