Properties

Label 126126.cu
Number of curves $1$
Conductor $126126$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 126126.cu1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126126.cu do not have complex multiplication.

Modular form 126126.2.a.cu

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{5} - q^{8} - 3 q^{10} - q^{11} - q^{13} + q^{16} + 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 126126.cu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126126.cu1 126126ca1 \([1, -1, 0, -160533, -25818507]\) \(-12808391413763617/674439727104\) \(-24091661491881984\) \([]\) \(1115136\) \(1.9027\) \(\Gamma_0(N)\)-optimal