Properties

Label 124950y
Number of curves $1$
Conductor $124950$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 124950y1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 124950y do not have complex multiplication.

Modular form 124950.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - 2 q^{11} - q^{12} + q^{16} + q^{17} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 124950y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
124950.t1 124950y1 \([1, 1, 0, -2230, 118420]\) \(-417267265/1850688\) \(-5443289812800\) \([]\) \(207360\) \(1.1287\) \(\Gamma_0(N)\)-optimal