Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-7725x+258525\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-7725xz^2+258525z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-10012275x+12211923150\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(66, 171)$ | $0.31051205190631806516399767348$ | $\infty$ |
$(15, 375)$ | $0.61079788129665909116941833907$ | $\infty$ |
Integral points
\( \left(-95, 430\right) \), \( \left(-95, -335\right) \), \( \left(-70, 715\right) \), \( \left(-70, -645\right) \), \( \left(-6, 555\right) \), \( \left(-6, -549\right) \), \( \left(15, 375\right) \), \( \left(15, -390\right) \), \( \left(45, 45\right) \), \( \left(45, -90\right) \), \( \left(49, 1\right) \), \( \left(49, -50\right) \), \( \left(50, -5\right) \), \( \left(50, -45\right) \), \( \left(66, 171\right) \), \( \left(66, -237\right) \), \( \left(210, 2715\right) \), \( \left(210, -2925\right) \), \( \left(1970, 86395\right) \), \( \left(1970, -88365\right) \)
Invariants
Conductor: | $N$ | = | \( 124950 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-86665320000$ | = | $-1 \cdot 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( -\frac{1665063952825}{2829888} \) | = | $-1 \cdot 2^{-6} \cdot 3^{-2} \cdot 5^{2} \cdot 7 \cdot 13^{3} \cdot 17^{-3} \cdot 163^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.99366423395399409974936781196$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.13286657163340842403155591031$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9409208643145742$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.27832945471106$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.18879689635327605795362733101$ |
|
Real period: | $\Omega$ | ≈ | $1.0767151664501588377796087541$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 2\cdot2\cdot3\cdot1\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.3180973405624766055975251551 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.318097341 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.076715 \cdot 0.188797 \cdot 36}{1^2} \\ & \approx 7.318097341\end{aligned}$$
Modular invariants
Modular form 124950.2.a.k
For more coefficients, see the Downloads section to the right.
Modular degree: | 217728 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
$17$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1227 & 2 \\ 1234 & 7 \end{array}\right),\left(\begin{array}{rr} 1261 & 6 \\ 927 & 19 \end{array}\right),\left(\begin{array}{rr} 715 & 6 \\ 717 & 19 \end{array}\right),\left(\begin{array}{rr} 122 & 1311 \\ 367 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1423 & 6 \\ 1422 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1428])$ is a degree-$45482508288$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1428\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 20825 = 5^{2} \cdot 7^{2} \cdot 17 \) |
$3$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$5$ | additive | $14$ | \( 4998 = 2 \cdot 3 \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $14$ | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 124950.k
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.83300.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.471844520000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.620272839375.5 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.1311450210000.4 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.1708506176055109797891158443385768995209981000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.23594010593404687907761250292517983000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | add | ord | ord | split | ord | ss | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 3 | 4 | - | - | 2 | 2 | 3 | 2 | 2,2 | 2 | 2 | 2 | 2,4 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.