Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2+155550x-137061000\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z+155550xz^2-137061000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+201592125x-6397741901250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(31814, 5659126)$ | $8.0848168267733066796515369454$ | $\infty$ |
Integral points
\( \left(31814, 5659126\right) \), \( \left(31814, -5690940\right) \)
Invariants
Conductor: | $N$ | = | \( 124950 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-8363978628370312500$ | = | $-1 \cdot 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 7^{9} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{9056932295}{181997172} \) | = | $2^{-2} \cdot 3^{-3} \cdot 5 \cdot 7^{-3} \cdot 17^{-3} \cdot 23^{3} \cdot 53^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3112301052640699388024082947$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.26531642244701303651589236749$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9286396064323877$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.345381981721261$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.0848168267733066796515369454$ |
|
Real period: | $\Omega$ | ≈ | $0.11308077466908579011895943388$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.6569493993167419855321685259 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.656949399 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.113081 \cdot 8.084817 \cdot 4}{1^2} \\ & \approx 3.656949399\end{aligned}$$
Modular invariants
Modular form 124950.2.a.c
For more coefficients, see the Downloads section to the right.
Modular degree: | 3110400 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$7$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1261 & 6 \\ 927 & 19 \end{array}\right),\left(\begin{array}{rr} 715 & 6 \\ 717 & 19 \end{array}\right),\left(\begin{array}{rr} 1425 & 1426 \\ 1418 & 1421 \end{array}\right),\left(\begin{array}{rr} 1019 & 1422 \\ 201 & 1409 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1423 & 6 \\ 1422 & 7 \end{array}\right),\left(\begin{array}{rr} 834 & 601 \\ 955 & 138 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1428])$ is a degree-$45482508288$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1428\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 62475 = 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
$3$ | nonsplit multiplicative | $4$ | \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \) |
$5$ | additive | $14$ | \( 4998 = 2 \cdot 3 \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $32$ | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 124950.c
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 17850.bd2, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.35700.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1819971720000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.92610000.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.8921430000.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.8576612100000000.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.302542976717309857763906203230543288937500000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.4908029293996058006784000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | add | ord | ord | nonsplit | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 1 | - | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.