Properties

Label 124800.ck
Number of curves $1$
Conductor $124800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 124800.ck1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 124800.ck do not have complex multiplication.

Modular form 124800.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} + q^{9} - 5 q^{11} + q^{13} + 7 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 124800.ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
124800.ck1 124800dr1 \([0, -1, 0, -274253, -58583883]\) \(-5569542323205760/407953774917\) \(-167097866206003200\) \([]\) \(1689600\) \(2.0540\) \(\Gamma_0(N)\)-optimal