Properties

Label 124800.q
Number of curves $1$
Conductor $124800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 124800.q1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 124800.q do not have complex multiplication.

Modular form 124800.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} - q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 124800.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
124800.q1 124800bf1 \([0, -1, 0, -458, -19338]\) \(-212960/3159\) \(-157950000000\) \([]\) \(124800\) \(0.83022\) \(\Gamma_0(N)\)-optimal