Properties

Label 12480.dg
Number of curves $4$
Conductor $12480$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12480.dg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12480.dg do not have complex multiplication.

Modular form 12480.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 4 q^{7} + q^{9} + 4 q^{11} - q^{13} + q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 12480.dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12480.dg1 12480cz3 \([0, 1, 0, -6625, 204575]\) \(490757540836/2142075\) \(140383027200\) \([2]\) \(24576\) \(0.99189\)  
12480.dg2 12480cz2 \([0, 1, 0, -625, -625]\) \(1650587344/950625\) \(15575040000\) \([2, 2]\) \(12288\) \(0.64532\)  
12480.dg3 12480cz1 \([0, 1, 0, -445, -3757]\) \(9538484224/26325\) \(26956800\) \([2]\) \(6144\) \(0.29875\) \(\Gamma_0(N)\)-optimal
12480.dg4 12480cz4 \([0, 1, 0, 2495, -2497]\) \(26198797244/15234375\) \(-998400000000\) \([2]\) \(24576\) \(0.99189\)