Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-1221620x+456499532\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-1221620xz^2+456499532z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1583219547x+21322190466486\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(27, 20566)$ | $2.3328180862419874364990683483$ | $\infty$ |
| $(447, -224)$ | $0$ | $2$ |
| $(811, -406)$ | $0$ | $2$ |
Integral points
\( \left(27, 20566\right) \), \( \left(27, -20594\right) \), \( \left(447, -224\right) \), \( \left(811, -406\right) \), \( \left(1487, 43196\right) \), \( \left(1487, -44684\right) \)
Invariants
| Conductor: | $N$ | = | \( 124215 \) | = | $3 \cdot 5 \cdot 7^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $26451704678352305625$ | = | $3^{2} \cdot 5^{4} \cdot 7^{8} \cdot 13^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{355045312441}{46580625} \) | = | $3^{-2} \cdot 5^{-4} \cdot 7^{-2} \cdot 13^{-2} \cdot 73^{3} \cdot 97^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4549798713104564154316220900$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.19955011805203139485220199750$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8881027733274627$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.5747420361338635$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.3328180862419874364990683483$ |
|
| Real period: | $\Omega$ | ≈ | $0.20360186085029374638345581658$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.7997288270727174587970034243 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.799728827 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.203602 \cdot 2.332818 \cdot 128}{4^2} \\ & \approx 3.799728827\end{aligned}$$
Modular invariants
Modular form 124215.2.a.r
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3096576 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 501 & 1090 \\ 758 & 1 \end{array}\right),\left(\begin{array}{rr} 365 & 4 \\ 730 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 621 & 1090 \\ 314 & 1 \end{array}\right),\left(\begin{array}{rr} 547 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1089 & 4 \\ 1088 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[1092])$ is a degree-$5072191488$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1092\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 41405 = 5 \cdot 7^{2} \cdot 13^{2} \) |
| $5$ | split multiplicative | $6$ | \( 24843 = 3 \cdot 7^{2} \cdot 13^{2} \) |
| $7$ | additive | $32$ | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 124215bf
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1365f2, its twist by $-91$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{91}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{273})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-91})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1421970391296.10 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | split | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | 1 | 2 | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.