Properties

Label 124215.r
Number of curves $4$
Conductor $124215$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 124215.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 124215.r do not have complex multiplication.

Modular form 124215.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3 q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - q^{15} - q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 124215.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
124215.r1 124215bf4 \([1, 1, 1, -4989475, -3825290890]\) \(24190225473961/2879296875\) \(1635064162810238671875\) \([2]\) \(6193152\) \(2.8016\)  
124215.r2 124215bf2 \([1, 1, 1, -1221620, 456499532]\) \(355045312441/46580625\) \(26451704678352305625\) \([2, 2]\) \(3096576\) \(2.4550\)  
124215.r3 124215bf1 \([1, 1, 1, -1180215, 493002180]\) \(320153881321/6825\) \(3875707645179825\) \([4]\) \(1548288\) \(2.1084\) \(\Gamma_0(N)\)-optimal
124215.r4 124215bf3 \([1, 1, 1, 1883755, 2402948582]\) \(1301812981559/5143122075\) \(-2920620885885805905075\) \([2]\) \(6193152\) \(2.8016\)