Properties

Label 123840.fa
Number of curves $4$
Conductor $123840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fa1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123840.fa have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123840.fa do not have complex multiplication.

Modular form 123840.2.a.fa

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 123840.fa

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123840.fa1 123840ck4 \([0, 0, 0, -286572, 1887536]\) \(54477543627364/31494140625\) \(1504656000000000000\) \([2]\) \(1179648\) \(2.1774\)  
123840.fa2 123840ck2 \([0, 0, 0, -193692, -32700976]\) \(67283921459536/260015625\) \(3105609984000000\) \([2, 2]\) \(589824\) \(1.8308\)  
123840.fa3 123840ck1 \([0, 0, 0, -193512, -32764984]\) \(1073544204384256/16125\) \(12037248000\) \([2]\) \(294912\) \(1.4843\) \(\Gamma_0(N)\)-optimal
123840.fa4 123840ck3 \([0, 0, 0, -103692, -63192976]\) \(-2580786074884/34615360125\) \(-1653774583799808000\) \([2]\) \(1179648\) \(2.1774\)