Properties

Label 123840.di
Number of curves $4$
Conductor $123840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("di1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123840.di have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123840.di do not have complex multiplication.

Modular form 123840.2.a.di

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} - 2 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 123840.di

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123840.di1 123840eu4 \([0, 0, 0, -39468, 775312]\) \(284630612552/153846045\) \(3675054630666240\) \([2]\) \(589824\) \(1.6777\)  
123840.di2 123840eu2 \([0, 0, 0, -23268, -1356608]\) \(466566337216/3744225\) \(11180195942400\) \([2, 2]\) \(294912\) \(1.3311\)  
123840.di3 123840eu1 \([0, 0, 0, -23223, -1362152]\) \(29687332481344/1935\) \(90279360\) \([2]\) \(147456\) \(0.98457\) \(\Gamma_0(N)\)-optimal
123840.di4 123840eu3 \([0, 0, 0, -7788, -3133712]\) \(-2186875592/176326875\) \(-4212073820160000\) \([2]\) \(589824\) \(1.6777\)