Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-2007942731x+34631635202294\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-2007942731xz^2+34631635202294z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2602293778755x+1615781378879576766\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(25871, -12936)$ | $0$ | $2$ |
Integral points
\( \left(25871, -12936\right) \)
Invariants
| Conductor: | $N$ | = | \( 12342 \) | = | $2 \cdot 3 \cdot 11^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $1444985655175062528$ | = | $2^{10} \cdot 3 \cdot 11^{7} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{505384091400037554067434625}{815656731648} \) | = | $2^{-10} \cdot 3^{-1} \cdot 5^{3} \cdot 11^{-1} \cdot 17^{-6} \cdot 31^{6} \cdot 97^{3} \cdot 1709^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6398925210582595688408008990$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.4409448846590742968098291100$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1764898982289331$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $8.053989862120115$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.12225814270994518340267325233$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot1\cdot2^{2}\cdot( 2 \cdot 3 ) $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.4670977125193422008320790280 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.467097713 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.122258 \cdot 1.000000 \cdot 48}{2^2} \\ & \approx 1.467097713\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4147200 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $17$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.4 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 253 & 12 \\ 252 & 13 \end{array}\right),\left(\begin{array}{rr} 134 & 261 \\ 219 & 8 \end{array}\right),\left(\begin{array}{rr} 15 & 58 \\ 230 & 5 \end{array}\right),\left(\begin{array}{rr} 133 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 214 & 255 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 230 & 3 \\ 61 & 256 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$10137600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 363 = 3 \cdot 11^{2} \) |
| $3$ | split multiplicative | $4$ | \( 242 = 2 \cdot 11^{2} \) |
| $5$ | good | $2$ | \( 6171 = 3 \cdot 11^{2} \cdot 17 \) |
| $11$ | additive | $72$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 12342n
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 1122m3, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | 4.0.2112.2 | \(\Z/4\Z\) | not in database |
| $6$ | 6.0.152158407984.9 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.4857532416.6 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $18$ | 18.6.3180466497984029961881701966908276176058362112.2 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 11 | 17 |
|---|---|---|---|---|
| Reduction type | nonsplit | split | add | split |
| $\lambda$-invariant(s) | 5 | 5 | - | 1 |
| $\mu$-invariant(s) | 0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.