Properties

Label 12342c
Number of curves $4$
Conductor $12342$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12342c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12342c do not have complex multiplication.

Modular form 12342.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{12} + 2 q^{13} + 4 q^{14} - 2 q^{15} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 12342c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12342.d3 12342c1 \([1, 1, 0, -46829, -3919923]\) \(6411014266033/296208\) \(524750540688\) \([2]\) \(46080\) \(1.3241\) \(\Gamma_0(N)\)-optimal
12342.d2 12342c2 \([1, 1, 0, -49249, -3495455]\) \(7457162887153/1370924676\) \(2428676689939236\) \([2, 2]\) \(92160\) \(1.6706\)  
12342.d1 12342c3 \([1, 1, 0, -234379, 40380355]\) \(803760366578833/65593817586\) \(116203449076471746\) \([2]\) \(184320\) \(2.0172\)  
12342.d4 12342c4 \([1, 1, 0, 97161, -20156913]\) \(57258048889007/132611470002\) \(-234929308408213122\) \([2]\) \(184320\) \(2.0172\)