Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-169913890x+852480046196\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-169913890xz^2+852480046196z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-220208400819x+39773969660534670\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(31291/4, 328075/8)$ | $2.4218934680808559092993407746$ | $\infty$ |
$(30103/4, -30107/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 12342 \) | = | $2 \cdot 3 \cdot 11^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $3060345153292416$ | = | $2^{7} \cdot 3^{8} \cdot 11^{8} \cdot 17 $ |
|
j-invariant: | $j$ | = | \( \frac{306234591284035366263793}{1727485056} \) | = | $2^{-7} \cdot 3^{-8} \cdot 11^{-2} \cdot 17^{-1} \cdot 181^{3} \cdot 372397^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0412153506050354082529285058$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8422677142058501362219567168$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0382088586045655$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.2675649974309575$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4218934680808559092993407746$ |
|
Real period: | $\Omega$ | ≈ | $0.21834918082462562817540630679$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{3}\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.2305476383997318718700366426 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.230547638 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.218349 \cdot 2.421893 \cdot 32}{2^2} \\ & \approx 4.230547638\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1290240 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.11 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1496 = 2^{3} \cdot 11 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 1490 & 1491 \end{array}\right),\left(\begin{array}{rr} 936 & 1419 \\ 1177 & 254 \end{array}\right),\left(\begin{array}{rr} 1211 & 528 \\ 1298 & 397 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 12 & 1089 \\ 1463 & 958 \end{array}\right),\left(\begin{array}{rr} 1489 & 8 \\ 1488 & 9 \end{array}\right),\left(\begin{array}{rr} 1087 & 0 \\ 0 & 1495 \end{array}\right)$.
The torsion field $K:=\Q(E[1496])$ is a degree-$33089126400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1496\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 2057 = 11^{2} \cdot 17 \) |
$3$ | split multiplicative | $4$ | \( 4114 = 2 \cdot 11^{2} \cdot 17 \) |
$7$ | good | $2$ | \( 6171 = 3 \cdot 11^{2} \cdot 17 \) |
$11$ | additive | $72$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 12342.p
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1122.m1, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{34}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{187}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{22}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{22}, \sqrt{34})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.1447518813097984.2 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.17747144605696.12 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | ord | ord | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 5 | 2 | 1 | 1 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.