Properties

Label 123200fn
Number of curves $4$
Conductor $123200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123200fn have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123200fn do not have complex multiplication.

Modular form 123200.2.a.fn

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{7} + q^{9} - q^{11} + 2 q^{13} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 123200fn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123200.hf3 123200fn1 \([0, -1, 0, -1461633, -682544863]\) \(-84309998289049/414124480\) \(-1696253870080000000\) \([2]\) \(2654208\) \(2.3461\) \(\Gamma_0(N)\)-optimal
123200.hf2 123200fn2 \([0, -1, 0, -23413633, -43598704863]\) \(346553430870203929/8300600\) \(33999257600000000\) \([2]\) \(5308416\) \(2.6927\)  
123200.hf4 123200fn3 \([0, -1, 0, 3634367, -3627640863]\) \(1296134247276791/2137096192000\) \(-8753546002432000000000\) \([2]\) \(7962624\) \(2.8954\)  
123200.hf1 123200fn4 \([0, -1, 0, -25037633, -37202552863]\) \(423783056881319689/99207416000000\) \(406353575936000000000000\) \([2]\) \(15925248\) \(3.2420\)