Show commands: SageMath
Rank
The elliptic curves in class 123200fn have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 123200fn do not have complex multiplication.Modular form 123200.2.a.fn
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 123200fn
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
123200.hf3 | 123200fn1 | \([0, -1, 0, -1461633, -682544863]\) | \(-84309998289049/414124480\) | \(-1696253870080000000\) | \([2]\) | \(2654208\) | \(2.3461\) | \(\Gamma_0(N)\)-optimal |
123200.hf2 | 123200fn2 | \([0, -1, 0, -23413633, -43598704863]\) | \(346553430870203929/8300600\) | \(33999257600000000\) | \([2]\) | \(5308416\) | \(2.6927\) | |
123200.hf4 | 123200fn3 | \([0, -1, 0, 3634367, -3627640863]\) | \(1296134247276791/2137096192000\) | \(-8753546002432000000000\) | \([2]\) | \(7962624\) | \(2.8954\) | |
123200.hf1 | 123200fn4 | \([0, -1, 0, -25037633, -37202552863]\) | \(423783056881319689/99207416000000\) | \(406353575936000000000000\) | \([2]\) | \(15925248\) | \(3.2420\) |