Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-23413633x-43598704863\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-23413633xz^2-43598704863z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1896504300x-31789145358000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(65163883/7569, 412748661500/658503)$ | $13.868838958873490975365034132$ | $\infty$ |
| $(-2793, 0)$ | $0$ | $2$ |
Integral points
\( \left(-2793, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 123200 \) | = | $2^{6} \cdot 5^{2} \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $33999257600000000$ | = | $2^{21} \cdot 5^{8} \cdot 7^{3} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{346553430870203929}{8300600} \) | = | $2^{-3} \cdot 5^{-2} \cdot 7^{-3} \cdot 11^{-2} \cdot 29^{3} \cdot 53^{3} \cdot 457^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6926521396358865688831981105$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.84821241257891841745697026170$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9755108563325865$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.33376675394205$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $13.868838958873490975365034132$ |
|
| Real period: | $\Omega$ | ≈ | $0.068632900351551796939325560933$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot2^{2}\cdot3\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $11.422303707073004114606780098 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.422303707 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.068633 \cdot 13.868839 \cdot 48}{2^2} \\ & \approx 11.422303707\end{aligned}$$
Modular invariants
Modular form 123200.2.a.hf
For more coefficients, see the Downloads section to the right.
| Modular degree: | 5308416 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{11}^{*}$ | additive | -1 | 6 | 21 | 3 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2521 & 12 \\ 5886 & 73 \end{array}\right),\left(\begin{array}{rr} 6610 & 3 \\ 5253 & 9232 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 9190 & 9231 \end{array}\right),\left(\begin{array}{rr} 2694 & 4223 \\ 7315 & 8854 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9230 & 9237 \\ 4647 & 8 \end{array}\right),\left(\begin{array}{rr} 3089 & 2 \\ 7758 & 13 \end{array}\right),\left(\begin{array}{rr} 5543 & 9228 \\ 5538 & 9167 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$9809952768000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 175 = 5^{2} \cdot 7 \) |
| $3$ | good | $2$ | \( 17600 = 2^{6} \cdot 5^{2} \cdot 11 \) |
| $5$ | additive | $18$ | \( 4928 = 2^{6} \cdot 7 \cdot 11 \) |
| $7$ | split multiplicative | $8$ | \( 17600 = 2^{6} \cdot 5^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 11200 = 2^{6} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 123200.hf
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 770.a2, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-10}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.677600.4 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-10}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.632491200000.1 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1439868559360000.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.29385072640000.31 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.188330424662396827196826846658560000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | split | nonsplit | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | - | 2 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 3 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.