Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2+xy=x^3-8590579x-9692009887\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z+xyz=x^3-8590579xz^2-9692009887z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-11133390411x-452157013116666\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(40702/9, 5599811/27)$ | $6.8011378658810537251055382998$ | $\infty$ | 
| $(-6769/4, 6769/8)$ | $0$ | $2$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 122694 \) | = | $2 \cdot 3 \cdot 11^{2} \cdot 13^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $35869773468672$ | = | $2^{10} \cdot 3^{2} \cdot 11^{6} \cdot 13^{3} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{18013780041269221}{9216} \) | = | $2^{-10} \cdot 3^{-2} \cdot 11^{3} \cdot 23831^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3689534897719546146595231270$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.52876851400738515861517947763$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.0923393619522563$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.078932666959541$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.8011378658810537251055382998$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.088184842873411529519287547445$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 80 $ = $ ( 2 \cdot 5 )\cdot2\cdot2\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $11.995145481262602789053151934 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 11.995145481 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.088185 \cdot 6.801138 \cdot 80}{2^2} \\ & \approx 11.995145481\end{aligned}$$
Modular invariants
Modular form 122694.2.a.cx
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3456000 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 | 
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $13$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
| $5$ | 5B | 5.6.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8580 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 779 & 0 \\ 0 & 8579 \end{array}\right),\left(\begin{array}{rr} 8561 & 20 \\ 8560 & 21 \end{array}\right),\left(\begin{array}{rr} 6062 & 3135 \\ 385 & 518 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 8340 & 8231 \end{array}\right),\left(\begin{array}{rr} 4291 & 7040 \\ 7810 & 1761 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 2861 & 7040 \\ 2090 & 1761 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1717 & 7040 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[8580])$ is a degree-$2656862208000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8580\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1573 = 11^{2} \cdot 13 \) | 
| $3$ | split multiplicative | $4$ | \( 40898 = 2 \cdot 11^{2} \cdot 13^{2} \) | 
| $5$ | good | $2$ | \( 61347 = 3 \cdot 11^{2} \cdot 13^{2} \) | 
| $11$ | additive | $62$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) | 
| $13$ | additive | $50$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 122694dk
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 1014c4, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.38280528.1 | \(\Z/4\Z\) | not in database | 
| $4$ | 4.0.33229625.1 | \(\Z/10\Z\) | not in database | 
| $8$ | 8.0.1465398823958784.62 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.2605153464815616.37 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $8$ | 8.0.1104207977640625.11 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/20\Z\) | not in database | 
| $20$ | 20.4.5450260978894418402975137246595763874053955078125.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | ord | ord | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 3 | 2 | 1 | 3 | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | 0 | 1 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.