Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-47053575x+124756493181\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-47053575xz^2+124756493181z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-60981433227x+5821553667359430\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4659, 79466)$ | $0.74178357970270453871573032999$ | $\infty$ |
$(-7925, 3962)$ | $0$ | $2$ |
Integral points
\( \left(-7925, 3962\right) \), \( \left(2891, 112122\right) \), \( \left(2891, -115014\right) \), \( \left(3307, 71354\right) \), \( \left(3307, -74662\right) \), \( \left(4659, 79466\right) \), \( \left(4659, -84126\right) \), \( \left(5143, 134642\right) \), \( \left(5143, -139786\right) \), \( \left(194953, 85928762\right) \), \( \left(194953, -86123716\right) \)
Invariants
Conductor: | $N$ | = | \( 122694 \) | = | $2 \cdot 3 \cdot 11^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-58419753640609166327808$ | = | $-1 \cdot 2^{16} \cdot 3^{6} \cdot 11^{7} \cdot 13^{7} $ |
|
j-invariant: | $j$ | = | \( -\frac{1347365318848849}{6831931392} \) | = | $-1 \cdot 2^{-16} \cdot 3^{-6} \cdot 11^{-1} \cdot 13^{-1} \cdot 17^{3} \cdot 73^{3} \cdot 89^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2153179199312608455076807226$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.73389560480130720544996521284$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9736212767448762$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.515084430553153$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.74178357970270453871573032999$ |
|
Real period: | $\Omega$ | ≈ | $0.11185377304716530032562349836$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2^{4}\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.3101626991475306414638813751 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.310162699 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.111854 \cdot 0.741784 \cdot 256}{2^2} \\ & \approx 5.310162699\end{aligned}$$
Modular invariants
Modular form 122694.2.a.bq
For more coefficients, see the Downloads section to the right.
Modular degree: | 23224320 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1716 = 2^{2} \cdot 3 \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1145 & 4 \\ 574 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 433 & 1288 \\ 428 & 1287 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 134 & 1 \\ 791 & 0 \end{array}\right),\left(\begin{array}{rr} 1713 & 4 \\ 1712 & 5 \end{array}\right),\left(\begin{array}{rr} 158 & 1 \\ 779 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[1716])$ is a degree-$132843110400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1716\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 20449 = 11^{2} \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 40898 = 2 \cdot 11^{2} \cdot 13^{2} \) |
$11$ | additive | $72$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 122694ct
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 858i1, its twist by $-143$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-143}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.20592.3 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.8670998958336.16 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | ss | add | add | ss | ss | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 1 | 1 | 1,1 | - | - | 1,1 | 1,1 | 3 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | - | - | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.