Properties

Label 122694.dh
Number of curves $2$
Conductor $122694$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 122694.dh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122694.dh do not have complex multiplication.

Modular form 122694.2.a.dh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + 3 q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9} + 3 q^{10} + q^{12} - 2 q^{14} + 3 q^{15} + q^{16} + 3 q^{17} + q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 122694.dh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122694.dh1 122694de1 \([1, 0, 0, -1268264, -962660544]\) \(-156116857/186624\) \(-269693464960198566144\) \([]\) \(5391360\) \(2.6142\) \(\Gamma_0(N)\)-optimal
122694.dh2 122694de2 \([1, 0, 0, 10694401, 17998163481]\) \(93603087383/150994944\) \(-218205319995451521368064\) \([]\) \(16174080\) \(3.1635\)