Properties

Label 122694.cn
Number of curves $1$
Conductor $122694$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 122694.cn1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122694.cn do not have complex multiplication.

Modular form 122694.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + 4 q^{7} + q^{8} + q^{9} + q^{10} - q^{12} + 4 q^{14} - q^{15} + q^{16} - 5 q^{17} + q^{18} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 122694.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122694.cn1 122694bt1 \([1, 1, 1, -11580, -416811]\) \(158171/24\) \(26057702151624\) \([]\) \(449280\) \(1.2982\) \(\Gamma_0(N)\)-optimal