Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-3149572x-2502541579\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-3149572xz^2-2502541579z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-4081845339x-116697352221450\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1991815745083/286320241, 2690650885947857623/4844824797961)$ | $22.978632751813563966607013096$ | $\infty$ |
| $(2085, -1043)$ | $0$ | $2$ |
Integral points
\( \left(2085, -1043\right) \)
Invariants
| Conductor: | $N$ | = | \( 122694 \) | = | $2 \cdot 3 \cdot 11^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-703095089117212821744$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 11^{10} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{404075127457}{82223856} \) | = | $-1 \cdot 2^{-4} \cdot 3^{-3} \cdot 11^{-4} \cdot 13^{-1} \cdot 7393^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7225409300308737063559562400$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.24111861490092006629824073023$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9803976849267315$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.847748272630729$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $22.978632751813563966607013096$ |
|
| Real period: | $\Omega$ | ≈ | $0.056050481195375600761385222599$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot1\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $10.303707383607744489707268663 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.303707384 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.056050 \cdot 22.978633 \cdot 32}{2^2} \\ & \approx 10.303707384\end{aligned}$$
Modular invariants
Modular form 122694.2.a.cp
For more coefficients, see the Downloads section to the right.
| Modular degree: | 5806080 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $11$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $13$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 3164 & 3431 \\ 1033 & 3426 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3426 & 3427 \end{array}\right),\left(\begin{array}{rr} 3425 & 8 \\ 3424 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 3011 & 3006 \\ 434 & 2147 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 433 & 432 \\ 2158 & 439 \end{array}\right),\left(\begin{array}{rr} 2495 & 3424 \\ 3116 & 3399 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1148 & 1 \\ 2311 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[3432])$ is a degree-$531372441600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 61347 = 3 \cdot 11^{2} \cdot 13^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 40898 = 2 \cdot 11^{2} \cdot 13^{2} \) |
| $11$ | additive | $72$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 122694.cp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 858.f4, its twist by $-143$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-143}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{33}, \sqrt{-39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.13188589415629056.18 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.15415109259264.21 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | nonsplit | ord | ss | add | add | ord | ss | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 1 | 1 | 1,1 | - | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | - | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.