Show commands: SageMath
Rank
The elliptic curves in class 12240.bp have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 12240.bp do not have complex multiplication.Modular form 12240.2.a.bp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 12240.bp
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 12240.bp1 | 12240bv1 | \([0, 0, 0, -3964692, 3038267351]\) | \(590887175978458660864/57171426328125\) | \(666847516691250000\) | \([2]\) | \(215040\) | \(2.4561\) | \(\Gamma_0(N)\)-optimal |
| 12240.bp2 | 12240bv2 | \([0, 0, 0, -3669447, 3509891714]\) | \(-29279123829148431184/11573052978515625\) | \(-2159809439062500000000\) | \([2]\) | \(430080\) | \(2.8027\) |