Properties

Label 1224.a
Number of curves $1$
Conductor $1224$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1224.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1224.a do not have complex multiplication.

Modular form 1224.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + q^{11} + 3 q^{13} + q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1224.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1224.a1 1224e1 \([0, 0, 0, 4596, 46676]\) \(57530252288/38336139\) \(-7154443604736\) \([]\) \(1920\) \(1.1553\) \(\Gamma_0(N)\)-optimal