Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-428129x+68918529\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-428129xz^2+68918529z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-34678476x+50137572240\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(173, 0)$ | $0$ | $2$ |
| $(551, 0)$ | $0$ | $2$ |
Integral points
\( \left(-723, 0\right) \), \( \left(173, 0\right) \), \( \left(551, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 122304 \) | = | $2^{6} \cdot 3 \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $2978917375807586304$ | = | $2^{22} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{281397674377}{96589584} \) | = | $2^{-4} \cdot 3^{-6} \cdot 7^{-2} \cdot 13^{-2} \cdot 6553^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2467455878993579109910675496$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.23406974253178329431254299569$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9475546814672546$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.312276078995208$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.23312618937927799434919559205$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.93250475751711197739678236822 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.932504758 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.233126 \cdot 1.000000 \cdot 64}{4^2} \\ & \approx 0.932504758\end{aligned}$$
Modular invariants
Modular form 122304.2.a.w
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1769472 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{12}^{*}$ | additive | -1 | 6 | 22 | 4 |
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1091 & 0 \\ 0 & 2183 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1713 & 2182 \\ 1406 & 1093 \end{array}\right),\left(\begin{array}{rr} 1819 & 2180 \\ 1454 & 2175 \end{array}\right),\left(\begin{array}{rr} 547 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 591 & 2 \\ 334 & 1091 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2181 & 4 \\ 2180 & 5 \end{array}\right),\left(\begin{array}{rr} 1095 & 2180 \\ 1096 & 2179 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$81155063808$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 49 = 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 40768 = 2^{6} \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $32$ | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 122304gg
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 546c2, its twist by $56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-3}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-14}, \sqrt{-26})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{26}, \sqrt{42})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.132513778481397717569346994176.4 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 13 |
|---|---|---|---|---|
| Reduction type | add | nonsplit | add | split |
| $\lambda$-invariant(s) | - | 0 | - | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.