Properties

Label 122304fu
Number of curves $2$
Conductor $122304$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 122304fu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122304fu do not have complex multiplication.

Modular form 122304.2.a.fu

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} + q^{9} - 2 q^{11} - q^{13} + 4 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 122304fu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122304.a2 122304fu1 \([0, -1, 0, 915, 33741]\) \(702464/4563\) \(-549716364288\) \([2]\) \(221184\) \(0.93449\) \(\Gamma_0(N)\)-optimal
122304.a1 122304fu2 \([0, -1, 0, -11825, 454161]\) \(94875856/9477\) \(18267497644032\) \([2]\) \(442368\) \(1.2811\)