Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+212597x-43752995\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+212597xz^2-43752995z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+275525037x-2045472613650\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(7440015/41209, 5481030115/8365427)$ | $11.989010124184200395084744061$ | $\infty$ |
| $(715/4, -715/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 122034 \) | = | $2 \cdot 3 \cdot 11 \cdot 43^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1445302085386512672$ | = | $-1 \cdot 2^{5} \cdot 3^{10} \cdot 11^{2} \cdot 43^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{168105213359}{228637728} \) | = | $2^{-5} \cdot 3^{-10} \cdot 11^{-2} \cdot 5519^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1703079583062513372599333049$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28970790045947012552351204823$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1002106061618209$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.159417966252607$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.989010124184200395084744061$ |
|
| Real period: | $\Omega$ | ≈ | $0.14339129551906468239436050545$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.8764787747918201820926306624 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.876478775 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.143391 \cdot 11.989010 \cdot 16}{2^2} \\ & \approx 6.876478775\end{aligned}$$
Modular invariants
Modular form 122034.2.a.d
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3225600 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $43$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.5 |
| $5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 56760 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 43 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 5161 & 36980 \\ 13330 & 29241 \end{array}\right),\left(\begin{array}{rr} 37841 & 36980 \\ 56330 & 29241 \end{array}\right),\left(\begin{array}{rr} 56741 & 20 \\ 56740 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 27736 & 9245 \\ 1935 & 29026 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 56520 & 56411 \end{array}\right),\left(\begin{array}{rr} 15051 & 36980 \\ 19780 & 47387 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 37626 & 9245 \\ 30745 & 26446 \end{array}\right),\left(\begin{array}{rr} 26399 & 0 \\ 0 & 56759 \end{array}\right)$.
The torsion field $K:=\Q(E[56760])$ is a degree-$5413458935808000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/56760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1849 = 43^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 40678 = 2 \cdot 11 \cdot 43^{2} \) |
| $5$ | good | $2$ | \( 20339 = 11 \cdot 43^{2} \) |
| $11$ | split multiplicative | $12$ | \( 11094 = 2 \cdot 3 \cdot 43^{2} \) |
| $43$ | additive | $926$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 122034d
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 66c2, its twist by $-43$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-43}) \) | \(\Z/10\Z\) | not in database |
| $4$ | 4.2.64433952.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-43})\) | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/20\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
| $16$ | deg 16 | \(\Z/30\Z\) | not in database |
| $20$ | 20.4.30305229926964685828084683721682403564453125.1 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | ord | ord | split | ord | ord | ss | ord | ord | ord | ord | ord | add | ord |
| $\lambda$-invariant(s) | 2 | 1 | 1 | 3 | 2 | 1 | 1 | 1,3 | 1 | 1 | 1 | 1 | 1 | - | 1 |
| $\mu$-invariant(s) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | - | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.