y2+xy=x3+x2−275811x+111003157
|
(homogenize, simplify) |
y2z+xyz=x3+x2z−275811xz2+111003157z3
|
(dehomogenize, simplify) |
y2=x3−357451731x+5184325065582
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, 1, 0, -275811, 111003157])
gp:E = ellinit([1, 1, 0, -275811, 111003157])
magma:E := EllipticCurve([1, 1, 0, -275811, 111003157]);
oscar:E = elliptic_curve([1, 1, 0, -275811, 111003157])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z⊕Z
magma:MordellWeilGroup(E);
| P | h^(P) | Order |
| (5413,393852) | 1.2046489197988346333544546531 | ∞ |
| (16213/16,1858853/64) | 4.3886846253601753509432919245 | ∞ |
(1383,48065), (1383,−49448), (5413,393852), (5413,−399265)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
| Conductor: |
N |
= |
122018 | = | 2⋅132⋅192 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
| Discriminant: |
Δ |
= |
−3991184124533860904 | = | −1⋅23⋅139⋅196 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
| j-invariant: |
j |
= |
−1757610218313 | = | −1⋅2−3⋅73⋅13−3⋅313 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
| Endomorphism ring: |
End(E) | = | Z |
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) | = | SU(2) |
| Faltings height: |
hFaltings | ≈ | 2.2597744501133104081068453290 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
| Stable Faltings height: |
hstable | ≈ | −0.49491971820067818992441210773 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
| abc quality: |
Q | ≈ | 0.947172997962475 |
|
| Szpiro ratio: |
σm | ≈ | 4.318278883577502 |
|
| Analytic rank: |
ran | = | 2
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
| Mordell-Weil rank: |
r | = | 2
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
| Regulator: |
Reg(E/Q) | ≈ | 4.9262011246028900184148515294 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
| Real period: |
Ω | ≈ | 0.22138532436665373903847807899 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
| Tamagawa product: |
∏pcp | = | 8
= 1⋅22⋅2
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
| Torsion order: |
#E(Q)tor | = | 1 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
| Special value: |
L(2)(E,1)/2! | ≈ | 8.7247090709246819172347451496 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
| Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
8.724709071≈L(2)(E,1)/2!=?#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.221385⋅4.926201⋅8≈8.724709071
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 1, 0, -275811, 111003157]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 1, 0, -275811, 111003157]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
122018.2.a.h
q−q2−q3+q4+3q5+q6+q7−q8−2q9−3q10−6q11−q12−q14−3q15+q16−3q17+2q18+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[1, 18, 0, 1], [1882, 1881, 7011, 15904], [1, 9, 9, 82], [15332, 15903, 5985, 10316], [2585, 12654, 10602, 6157], [1, 6, 6, 37], [10774, 1881, 11457, 15904], [1, 0, 18, 1], [1, 12, 0, 1], [14039, 0, 0, 17783], [17767, 18, 17766, 19]]
GL(2,Integers(17784)).subgroup(gens)
magma:Gens := [[1, 18, 0, 1], [1882, 1881, 7011, 15904], [1, 9, 9, 82], [15332, 15903, 5985, 10316], [2585, 12654, 10602, 6157], [1, 6, 6, 37], [10774, 1881, 11457, 15904], [1, 0, 18, 1], [1, 12, 0, 1], [14039, 0, 0, 17783], [17767, 18, 17766, 19]];
sub<GL(2,Integers(17784))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 17784=23⋅32⋅13⋅19, index 144, genus 3, and generators
(10181),(18827011188115904),(19982),(1533259851590310316),(258510602126546157),(16637),(1077411457188115904),(11801),(10121),(140390017783),(17767177661819).
The torsion field K:=Q(E[17784]) is a degree-133818903429120 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/17784Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
| ℓ |
Reduction type |
Serre weight |
Serre conductor |
| 2 |
nonsplit multiplicative |
4 |
61009=132⋅192 |
| 3 |
good |
2 |
61009=132⋅192 |
| 13 |
additive |
98 |
722=2⋅192 |
| 19 |
additive |
182 |
338=2⋅132 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
3.
Its isogeny class 122018l
consists of 3 curves linked by isogenies of
degrees dividing 9.
The minimal quadratic twist of this elliptic curve is
26a1, its twist by −247.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.