Properties

Label 121847f
Number of curves $1$
Conductor $121847$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 121847f1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(19\)\(1 - T\)
\(53\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121847f do not have complex multiplication.

Modular form 121847.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - 3 q^{5} + q^{7} - 3 q^{9} + 6 q^{10} - 2 q^{14} - 4 q^{16} + 3 q^{17} + 6 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 121847f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121847.a1 121847f1 \([0, 0, 1, 7381, 139422]\) \(25102282752/19266931\) \(-34132543549291\) \([]\) \(372600\) \(1.2849\) \(\Gamma_0(N)\)-optimal