Properties

Label 121680y
Number of curves $4$
Conductor $121680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 121680y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121680y do not have complex multiplication.

Modular form 121680.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 121680y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121680.cr4 121680y1 \([0, 0, 0, 5577, -74698]\) \(21296/15\) \(-13511976042240\) \([2]\) \(245760\) \(1.2080\) \(\Gamma_0(N)\)-optimal
121680.cr3 121680y2 \([0, 0, 0, -24843, -628342]\) \(470596/225\) \(810718562534400\) \([2, 2]\) \(491520\) \(1.5546\)  
121680.cr2 121680y3 \([0, 0, 0, -207363, 35912162]\) \(136835858/1875\) \(13511976042240000\) \([2]\) \(983040\) \(1.9012\)  
121680.cr1 121680y4 \([0, 0, 0, -329043, -72602062]\) \(546718898/405\) \(2918586825123840\) \([2]\) \(983040\) \(1.9012\)