Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-4567563x+3588918138\)
|
(homogenize, simplify) |
\(y^2z=x^3-4567563xz^2+3588918138z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-4567563x+3588918138\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(7081/4, 259325/8)$ | $7.2155208722938037579135077026$ | $\infty$ |
$(1014, 0)$ | $0$ | $2$ |
Integral points
\( \left(1014, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 121680 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $534344604566423040000$ | = | $2^{12} \cdot 3^{9} \cdot 5^{4} \cdot 13^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{12326391}{625} \) | = | $3^{3} \cdot 5^{-4} \cdot 7^{3} \cdot 11^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7355784419271877610779802411$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.70523997322999236892580138922$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9050395539749845$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.920688049345221$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.2155208722938037579135077026$ |
|
Real period: | $\Omega$ | ≈ | $0.16241364690113061750407680001$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.6875962366418553231796175839 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.687596237 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.162414 \cdot 7.215521 \cdot 16}{2^2} \\ & \approx 4.687596237\end{aligned}$$
Modular invariants
Modular form 121680.2.a.f
For more coefficients, see the Downloads section to the right.
Modular degree: | 5750784 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$13$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 848 & 3 \\ 317 & 1544 \end{array}\right),\left(\begin{array}{rr} 394 & 393 \\ 21 & 406 \end{array}\right),\left(\begin{array}{rr} 1 & 1178 \\ 1170 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 6 & 19 \\ 1033 & 1538 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 1552 & 1539 \end{array}\right),\left(\begin{array}{rr} 937 & 8 \\ 628 & 33 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 39 = 3 \cdot 13 \) |
$3$ | additive | $2$ | \( 13520 = 2^{4} \cdot 5 \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 24336 = 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $62$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 121680cp
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 7605d2, its twist by $156$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.237276.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.900798402816.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.230604391120896.18 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ss | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 3 | 1,1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.