Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-113568x-14798992\)
|
(homogenize, simplify) |
\(y^2z=x^3-113568xz^2-14798992z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-113568x-14798992\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 121680 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-867435499008000$ | = | $-1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 13^{7} $ |
|
j-invariant: | $j$ | = | \( -\frac{303464448}{1625} \) | = | $-1 \cdot 2^{15} \cdot 3^{3} \cdot 5^{-3} \cdot 7^{3} \cdot 13^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7109072458321348764753785561$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.53936768562560622381740859537$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9400430053541569$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.974949939548014$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.12999196263213694755095209224$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.51996785052854779020380836897 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.519967851 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.129992 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.519967851\end{aligned}$$
Modular invariants
Modular form 121680.2.a.u
For more coefficients, see the Downloads section to the right.
Modular degree: | 580608 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 395 & 774 \\ 396 & 773 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 775 & 6 \\ 774 & 7 \end{array}\right),\left(\begin{array}{rr} 157 & 6 \\ 81 & 19 \end{array}\right),\left(\begin{array}{rr} 389 & 0 \\ 0 & 779 \end{array}\right),\left(\begin{array}{rr} 66 & 331 \\ 133 & 84 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 479 & 774 \\ 657 & 761 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[780])$ is a degree-$3622993920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/780\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
$3$ | additive | $6$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 24336 = 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 121680.u
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 585.e1, its twist by $156$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-13}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.780.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.118638000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.51969138624.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.126547200.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.3990995109092253348111753868608000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.140357801066721332197495844634624000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.