Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-87085x-9107150\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-87085xz^2-9107150z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7053912x-6660274059\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-198, 578)$ | $2.4818240806496096090172714504$ | $\infty$ |
| $(-130, 0)$ | $0$ | $2$ |
Integral points
\((-198,\pm 578)\), \( \left(-130, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 121380 \) | = | $2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $6209389625250000$ | = | $2^{4} \cdot 3 \cdot 5^{6} \cdot 7^{3} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{189123395584}{16078125} \) | = | $2^{17} \cdot 3^{-1} \cdot 5^{-6} \cdot 7^{-3} \cdot 113^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7718084130871666569037172353$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.12415268087241018030653921921$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0434643593713167$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.906959859231927$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4818240806496096090172714504$ |
|
| Real period: | $\Omega$ | ≈ | $0.27942062252195896988645546540$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 1\cdot1\cdot( 2 \cdot 3 )\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.1608369776306145295043143978 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.160836978 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.279421 \cdot 2.481824 \cdot 24}{2^2} \\ & \approx 4.160836978\end{aligned}$$
Modular invariants
Modular form 121380.2.a.k
For more coefficients, see the Downloads section to the right.
| Modular degree: | 995328 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7140 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 7090 & 7131 \end{array}\right),\left(\begin{array}{rr} 2857 & 6732 \\ 6222 & 4693 \end{array}\right),\left(\begin{array}{rr} 7129 & 12 \\ 7128 & 13 \end{array}\right),\left(\begin{array}{rr} 4659 & 2278 \\ 4046 & 5441 \end{array}\right),\left(\begin{array}{rr} 290 & 1683 \\ 1513 & 2092 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1990 & 1683 \\ 5253 & 2092 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5879 & 0 \\ 0 & 7139 \end{array}\right)$.
The torsion field $K:=\Q(E[7140])$ is a degree-$3638600663040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 6069 = 3 \cdot 7 \cdot 17^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 1156 = 2^{2} \cdot 17^{2} \) |
| $5$ | split multiplicative | $6$ | \( 24276 = 2^{2} \cdot 3 \cdot 7 \cdot 17^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 17340 = 2^{2} \cdot 3 \cdot 5 \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 121380o
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 420c3, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{21}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-51}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.9710400.8 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{21}, \sqrt{-51})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.4641723792.9 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.41582713858560000.344 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.848626813440000.53 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.1013854583487439344234673667817558459000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | split | nonsplit | ord | ord | add | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 1 | 2 | 1 | 1 | 1 | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.